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1. IN’J’l{O1)[IC’1’JON”

l;iaitc clcmcat  mmic.liag has provca u s e f u l  for accaratcly  simalatia?,

sca(lcrcd or ra(iiatcd fields from compicx  tt]l-ec-(lil)lc.r)siot]:ll objccls whose gcoII)ctIy

varies on tiIc scale of a fractioa of a wavclcaglh, la or(icr 10 mfikc this mmiciiag

prac(icai  for cr)F,inccriag  cic.siga, it is nccasary to it)tcgt-fitc the stages of gmmctl  y

mmicl  iap, aad Imsb p,cacratioa,  numclical solut ioa of the fici(is,  ami display of ficl(i

iaforlnatioa.  ‘J’hc stages of geometry mmldiag,  mm}) gcacratioa,  and field clisplay

aI c commoaly  complctcd  usiag Comtnc.rci ally avail ablr  software. packages.

Algorithms fm the aumcrical solutioa of the. ficl(is ace(i to be. wri(tca for the. specific

class of prmblcms  coasidcrcd. ]ate.rior problems- situulatiag  ficlcis ia wave.gai(ics

‘J’hc.  research ctcscribcct ia tilis paper was carried out fit the Jet I’ropulsioa

1,atmratory, California lasti(ate  of I’cchao]ogy,  uadcr a coattact  wi(h the National

Acroaautics an{i Space Administration.
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and cavi[ics- have bc.cn saccessf ally solved using finite CICIIK III methods bcc.ausc a

bounding sarfacc,  sLIch as the cavity walls, exactly tI-anCaleS  the problcm clomain.

lixtcrior  pmbleIIIs-  simulating fields sca[lcrd or radiated from sll”rlctat’cs-  arc more

difficult to model  because of the nmci to namcrically  ~rancafc  (I1c fini[e element

mesh. ‘1’o practically cmnJ>utc a sola(ion to cxtcrim’  problems, the domain IIIUSI  bc

Irancatd  at some finite, surface where. the Somme. rfe.td radi at ion condition is

cnfmd,  either approxinlatcly or exactly. Approximate methods atlctnpl to truncate

the mesh using only local field information at each grid point, whereas exact

]ncthods arc global, neding information from the entire mesh boandal-y.  ‘1’his paper

oatlincs a method that couples ttlrec-ditlletlsiotl:tl finilc clmcnt solatiorrs interior 10

the. bounding surface. with an cfficicnt  integral e.qaation solution that cxacIly

enforces the !%mmcrfcld  radiation condition.

A finite clcnmnt modd  of Maxwc]l’s  cc]aations  farnishc.s  a local solation of

fields that is accaratc  in and around inhomogcnoas, cmnplcx  bodies  (Silvcstcr and

lkrrari, 1990; Jin, 1993).  ‘1’hc finite clement cliscrctization  can bc applied to the

vector  IIdnlhol[z  wave equation, derived clircctly from Maxvmll’s  car] eqaations, or

to a set of equations ckrivcd  from a scalar-vector potential forunulaticm of the fields.

I’hc usc of onc or the othc.r is directly tied to the choice of ttlrec-clitllc]lsion:tl  vector

finite c]cmcnl  basis functions. ]idgc dmcnts (hfar and dc }Imp, 1985; 1 m and

hfittra, 1992) can bc natarally USCCI to discrctim  the }Iclmholtz  e.qaation, providing

tangcnlia] licld continuity across material intcrfaccs,,ccme.ct disconlinaitiy in normal
,,

field cmnponcnts across intcrfaccs, nn(l,  a nat’aral discl’ctizatioa  of tangential field

cmnponcnts  at gc.omctry  surfaces. Nd:il clcmcnts  arc. LIscd to discrctiz.c scalar-
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ve.clor potential formulations whc.rc aaxiliary  cqaations arc inttodacd to cnfmcc

boundary conditions at sarfaces and to cnfotm  zero clivcrgcncc of fic.lds in soarcc-



free media (1’aulse.a, lkyse and 1.ynch,  1992; Angclini, Soiz.c ancl Sou(iais, 1993).

lkmnulations  based cm lhc usc of mixed elements arc also possible (Mur, 1993).

Siam  the finite elcme.nt  formulation of Maxwell’s cquatioas  applies to an

infinite. domain, it is necessary to truncate the finite clement mesh, enforcing the.

Sommcrfe]d  radiation condition. Approximate absorbing boundary conditions can

bc. usc,d to provide a computationally  cfficicnt  cnforccmcnt  of the radiation

con(iition (h4ittra, Ramahi,  Khcbir,  Gordon and Kmrki, 1989; I J ’ A n g e l o  a n d

Mayc.rgoy?, 1989; Chattcrjec., Jia and Volakis, 1993). I“hc.sc boundary conditions

only require local field information and thcrcfcm do not clisturb  the sparsity of the

rc.suiting systcm of linear ecluatimls. IXrc to the inherent approximations in the

cnforccmcnt of these. boundary conditions however, problems can arise. in tbc.ir USC.

l;tll~(latllct]t:illy,  they are most acculate  when placed far ftom the objccl, rcquil-irlg

additional mesh discrcti7.ation ancl resulting comput:itional  cost.

An alternative to approximate radiation conditions is the usc of an exact

expression for t}w fields on and outsick an arbitrary sul-face that truncates the

computational mesh. The. problcm domain is divided into interior and cxtc.rior

mp,ions, separate.d at the Incsh  boundary. The intmior fields arc modeled using the.

fini [c clcmc.nt rcprcmntat ion, while those in the cxtcl-iol- region arc nmlc.lcd using an

intc~,ral cqualion formulation. I’hc unknown SOLIICCS in the intcglal cqualion arc

directly retatccl to the tangential fields on the mesh boundary, and the r:idialion

condition is implicitly c.nforced  exactly through ttrc usc of the free-spacx C~rccn’s

function. liiclds in the two regions arc. coupled by enforcing boundary conditions cm

tallgcatial fic.ld conlponcnts at the. mesh bounclary,  lhcrchy producing a unique and

exact solution to Maxwell’s equations in both regions. Onc early me of this

tcchniquc  was outlined by Y,icnkicwicz, IIclly and IIcttcss (1977). ‘1’0 cnforcc
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continuity of fields at the mesh boundary, the expansion functions useci in the

integral equation can be identical or similar to those LIscd at the boundary of the

finite clcmcnt mesh. This approach allows the mesh to conform to the. body and

results in a near exact enforcement of field continuity bctwccn tbc. two regions

(Angclini, Soiz.e and Sourlais, 1993; Jin and 1,iepa, 1988; Calalo, lmbrialc,  Jacobi,

1,icwcr et al, 1989; Gang and Glisscm,  1990; Yuan, 1.ynch an(i Stmhbehn, 1990). It

also results in the computer storage and solution time bc.ing at least proportional to

that of a tllrec-clitlle.  nsiclllal surface integral equation formulation, defeating the.

cmnputational  efficiency of the finite clcmcn( method and limiting its usefulness.

A second approach decouples the interior finite clement mesh from that

use(i for the expansion functions in the integral equation formulation. q’hc

advantage of mesh decoupling is that a proper choice of the bounclary  can Ieaci to an

cfficicnt numerical solution. la the unimcmcnt mcthoci introduced by Mei (1972),

the boundary is the surface of a separable coordinate system (for example the

surface of a sphere). III the mcthoci intt’miuced by }klysc and Seidl (] 99] ) a surface

of revolution is proposed which results in e.igenfunction sel-ics expansion in only one

direction (azimuthal). This formulation suggeslcd  a node-basecl  tetrahedral

expansion in the finite clement region, and a };ouricr modal a7inluthal  expansion

together with llcrmitc polynomial functions along the surface of revolution

generator for the integral equation expansion. A similar tw’o-(lil~~c[~sior}al

fmnulat ion for arbitrary scatterers was given by Cwi k (1992). The general thrcc-

ditncnsioaal  formulation in this chapter builds upon these. previous two works,

utiliz.in:  vector eclge elements to ciiscrcti?c the }Iclrnholtz,  wave equation, and

picccwisc  triangle functions along the generator to efficiently mo(icl the mesh

truncation surf ace.. ‘l’he vector edge elements naturally enforce. the boun(iary
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condition at Jmrfcctly  conducting surfaces anti do not allow the generation of

pal-asitic ficlcis encountered when applying nodal clcmcnts.  ‘1’hcy also produce

fewer nrrn-zcm cntl-ics in the resultant sparse sys(cm of equations relative to noclal

elements. q’his  approach is followed, utilizing these specific features:

1 ) The integral equation mesh is separate from the finite clement mesh, ancl its

dcnsily  can vary according to cxpcricnccd  guidelines of known integral

cqua[ion solutions, indcpcndcnt  of the finite element gricl. I’hc integral equation

mesh can bc as close as possible to the object, limiting the computational

expense. of both the integral equation and finite  clcmcnt  por(ions of the

calculation.

2) ‘1’hc surface which truncates the finite clcmcnt  mesh is a surface of

revolution (Boyse  and ScicJl, 1991). The use of this surface gives an efficient

integral equation representation for the cxtcrim  fields. LJsing this surface

dccrcascs the. number of unknowns associated with the integral cqua[ion portion

of the pmblenl. Additionally. the surface ncccls only cnclmc  the body and can

bc placc(l as CIOSC  as possible to it, thus reducing the si~,c of the problcm

domain.

3) Vector e.{lgc elements arc USCCJ to discrctim  the }lclnlholtT, wave cquatirrn.

As noted above, tbcse. functions naturally enforce the proper continuity ancl

discontinuitics  in vector ficlcl com}mncnts  at interfaces. ‘I$hcy also naturally

cnforcc lhc boundary condition at perfectly conducting surf[tccs and CIO not
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allow the gcncratiort of parasitic fields cncountcrecl  when applying noclal

Clcmcnls.

The formulation hand]cs both scattming  and radiation problems (e.g.,

antenna elmcn(s or arrays). The radiation problcm only differs by the nmxl to

model impressed sources by the finite clement mesh (Zaffada, Cwik and Jamnejad,

1995). 10 this chapter a clctailcd description of the. scattering formulation will bc

oatlincd, followed by an examination of convergence and accuracy, and malts for a

scl of simple scatterers. in Cwik, Zaffada and Jamncja(i  (1995) fur[bcr  rcsal[s of

this approach can be found.

2. I’hcorctiral formulation

‘1’hc sca[tcrcr  and sarmanding  space arc broken into two regions: an iatcrior

parl containing the scatterers and frecspacc region oat to a clcfincd sarfacc, and the

extc.rim homogcnms  part (Iiigure  1). To efficiently model  ficlcls in the exterior

region, the surface  bounding the interior is pre.sc.ribcd  to bc a sat-face of revolution,

‘1’hc following formulation first outlines the interior finilc clcmcnt rcpre.scntatioa,

then the exterior integral equation model, ancl finally tbc coupling of fields at the

boandary  separating the two regions.

2,1 The finite dcnwmt rcprxmntation

In the. interior region, a finite c.lc.mcnt cliscrctimtion of a form of the. wave

eqaation  is usccl to model  tbc geometry and fic.lds. Applying a form of Green’s

thcomw  multiplying the wave equation by a testing function ~’, intcgtating  over

(1



the volume  and using the divergence theorem-a weak form of the wave equa[ion is

obtaiacd.  ‘J’his  form includes a surface integral which provides for a tmundary

condition relating the field inside the se.lcctcd volume to the field on tbc bounclary,

and thus provides a link to the outside ficlcl

(1)

)~is the magnetic field (the ~~-equation  is used in the cievclopmcnt; the

formulation of the dual ~-e.quation  is presented in Section 5), “~is a testing

function, the asterisk cbmotes conjugation, anrl ~~ X ; is the tangential component

--
of Eon the surface S ( ~V). 10 general, ~Vrcprcsents  all boundaries of the

volume, including the surface of revolution and any perfect conductors. 2’IIC

surface integrals over the perfect conductors are iclcntical]y  m-o  since their

intc.grancl includes the tangential electric field ~~ X fi. Iiquation (1) therefore

rcprcscnts the fields internal to and on the surface S. I’hcsc fields will bc nmclc]cd

using a sc.t of properly chosen finite clcmcnt basis functions. in liquation  ( 1),

s, all(l //, arc the relative permit livity and pcl-tnc.ability rcspcctivc]y,  and

k. and ?IO are free.-space wave number  and itnpccianc.e,  respcctive]y.

2.2 ‘J’hc conlbitml-fickl  integral cqualion representation

III the formulation of the integral equation, fictitious electric (J=ixll)

(and  ma.gnctic  ~ = --i X Z ) surface currents, equivalent to the tangential

magnetic and electric fields just on the exterior of the boundary surface, arc defined
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on tbc boundary. These currents produce fields in the exterior region which are the

scatkmd  fields. ‘I’he  sum of the scattcrd an(i tbc inciclcn[ field results in the total

field cvcrywhcrc outside the boundary surface. On the bc)unrtary  itself, this sutn is

equal to half the total ficlct. The scattcrccl fields are obtained from the tangential

currents via an integral over the boundary using the free-space Green’s function

licrncl. Two equations are obtained for the electric and magnetic fields on the

boundary- tbc electric field integral equation (} O;lll)  and the magnetic field integral

equation (Ml;lll),  rcspcctive]y.  A linear colnbination of the two with a constant

weighting factor ~ results in the conlbincci fic.ld integral equation (C1;I1l).  “1’hc

general form used in this formulation is

Z,f[m /?]O  ]+- z, [7]== y (2)

where ‘M and ‘J are the intcgro-differential operators used in defining the ~I;lfi,

and vi represents the incident ficht.

2.3 l~;nforcing  boundary conditions

The previous two sections have outlined field rcprcscntations  for the

interior and exterior regions. In the interior region, bound:iry conditions al any

rnatcrial interface, including perfect conductors, must bc cnforccd by a proper

application of the finite element basis functions. At tbc artificial surface of

revolution separating the interior and exterior regions, boundary conditions on the

continuity of tangential field components must bc enforced.



]ni~ially,  four equations are writlen for the tht’cc unknown field quantities of

intcl-cst. I’hc first unknown is the magnetic field internal to the volume V. The other

—.
two arc the electric ancl magnetic surface currents, .) and ill , on tbc boundary.

‘1’hc four equations are

integral equation (Cl;lli)  relating

set of equations enforcing the

found from the finite element equation (1), the

J and ti currents to the incident field (2), and a

continuity of ~~ and ~? across the. boundary,

Continuity of the magnetic ficlct across the boundary is enforced in a weak sense

N?lx}%7) *( fixr7*)d  L$=o (3)
A’

where. i) is a tc.sting function. This is an essential bounclary condition and must bc

cxplici[ly cnforccd. Continuity of the electric field across tbc bounclary  is made

ilnplicit in the finite clement equation in the surface integral term ~? X ~~, and is

tcrmccl a natul-al boundary condition

‘1’bis equation is combined with(1) to produce

(4)

1?()--””[[ ]~~ (Vx~).(Vx~*)-k2/@~*  d“- Mo~’*ds=O.  (5,
jko. E, (N

v
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llquat ions (5), (3) and (2) constitute the system of cquat ions representing fields in all

space in and about the scatterer.

3. Numerical implcmmt~tion

The three cc]uations  (5), (3) and (2) arc clise.retizcd using appropriate sets of

basis funclirms.  In the interior region, tetrahedral, vector edge clcmcots (Whitney

clcmcnts) arc used. On the bounding surface of revolution, a set of functions with

pieccwisc  line.ar variation along the surp~cc of revolution Scncratot, and wit}l an

a~itnut ha]  liouricr modal varial ion arc used.

3.] ‘J’IIc finilc clcmcnt mockl

An ensemble of clcmcots filling the interior region, exclucliog any pcrfcc[

conducting objects, is crcatccl using a mesh generator. The clcnlents  shoLIld

accurately represent the magnetic flcld, the geometry of the scatterer, and the

bounding surface of revolution. Siocc the scattcrcr is not a body of revolution in

general, the fioitc clement mesh will extend out from the scat(e.rcr to the surface of

rcvolut ion. I ;or an accurate model of the fields, tetrahedral, vcc(or cclgc clcmcnts arc

used to model ~~ (1 ,CC and Mittra, 1992)

E(r) = ~lliWj(r)
i

where

w;,,,, (r) = A,,l (r)VA,, (r) - A,l (r)VA,,i (r)

10

(6)

(6a)



and a(~) arc the tc(raheclral  shape functions. Testing functions arc also chosen to

bc the functions F(r).

‘1’hese functions arc LISd  in the volume intc.gral of (S). ‘t’he resultant

discrctiz,c.d volume integral is

(7)

whctc K is the assembled sparse finite clcmcnt matrix, and 11 is tbc vector of

complex, finite clcmcnt basis function alnplitadcs.

3.2 ,411 efficient exterior integral equation model

II) the surface of revolut ion gmmctry, a cylindrical coordin:itc

systcm  (P, r+, Z.) is sclcctcd  for the exterior region, and orthogonal surface

cocn”dinalcs (f, @) arc LIse.d on the  boundary itsc.]fi @ is the a?imutba] angle

variable and r is the contour length variable along the generating curve of the

surface of revolution. la the formulation of t}m integral equation, the equivalent

electric and magnetic surface currents (3 and M ) arc defined just on the outside of

the surface through the. rclaticms

---
141 = ~i – l.[~] -t K[~/I)o ] (8)



{

l, for points  outside  iW’

[i= ~, for points  on W

O, for points  inside JV

(9)

(9a)

and I. and A’ arc intcgro-differential  operators given by

1.[”””]  = j?]. Jj(k: [’.”]+” Vv’ “[”””]) #(ko]i –7+pLf” (1 o)
w

K[”  ..1 = ?]O jj[. . O] x kOVg(kOli  -- 7])dY’
dv

la (1 ()) and (11) g is the Green’s function for unbcmnded space

- jko I F- 7’I
,g(ko  IT – lq) = ---e~--—

Orkop= -q’

(11)

(12)

l;rom the above equations we can write the following two integral

cqua(ions  on tbc tangential components of tbc field, for obtaining the. ~ and ~



surface currents. The electric field integral equation, and magnetic field integral

equal ion ~espcctivly’  arc,

(llxl.) [m-/ ?]O ]+(; ?]O l-l ixlc)[~l= ?](, 7i, (Ire)

in which, for the sake of symmetry, the source term (tangential components of the

incident field) arc given as fictitious surface currents ~i and ~i. “l’hey arc

pre.se.ntcd in a form that is very similar both in terms of din}cnsions  as WC]]  as vector

orientations. The symbol, 1, represents the unity operator and is introclucccl for

notational consistency.

These two integral cquationsc  arc linearly combined to oblain the

cmnbincd-field  integral equation

{(1- a)(+?70fi xl- K)+-a(i xl.)} lti/?]ol+

{(l- a) L+a(+?)ol +fix K)}[m=” (14)

(l-~)fixti,+-a?~~  ‘i

1 iqual ion (14) is put in the more compact form given by (2) where the operators

Z1, ={(l–a)(}  ?]oi  Xl– K)+a(il  XL)}
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vi =(1 - a); x mi +- (x?)oji

(15)

(16)

arc used. This formulation of the operators follows from CIC1lRO code

devcilopment,  (Medgcysi-M  itschang  and l)utnam,  1984), a l t h o u g h  o t h e r

fcmnulations  are also possible.

Using the method of moments, this integral equation is turnccl into a

—
matrix equation. ‘l’he unknown currents ~ and .) arc expande.cl in a finite series of

basis functions ~ on the surface of revolution. ‘l’he testing functions arc selected

identical to expansion functions on the surface of revolution. ‘l’hey  arc writ[en as

srparab]c functions of I and @ and will have IWO orthogonal components along the

.
; an(l @ directions. I’he azimuthal function is the exponential harmonic

CX]l(.’jl2@)  (]icJLlricr  harmonics). ‘Ilc variation along the sulfacc  of revolution

.gencrator is represented by a triangle function 7’(I) dividccl  by ~(t), the radial

distance from t}]c z,-axis. l’bus,

(17)
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and holh cxpansirm and Rting  functions are. given as

A 7’ (t) ~jf,$q’k = (/) ~
p(t)

(19)

(20)

(21)

~~ (t) is a triangle  function spanning the k-th annulus cm the surface of

revolution. liach ammlus spans two segments along the generator, each referred to as

a strip. Adjacent triangles overlap on one scgmcn~.  ‘J’hcsc  overlapping triangle

functions I-csult in approximations to ~ and ~ which arc J>iccewisc Jincar  in I and

a lkmlicr series in @.

in the moment method, inner products arc formed between the testing

func(ions  and the integral equations expanded over the basis functions. }Icrc, using

the Galcrkin method, basis and testing functions arc chosel~,  identical :mj above.. The
.

complex inner Jmciuct  between any two vectors D and V is defined as

J5



(22)

‘l’he  original inte.gtal  equation is transformxl  into a set of linear equations

for each of IIN ]kmrier  modes since the l?ouricr  modes arc orthogonal and de.eoup]c.

‘l’bus, in the compact form it can be written as:

(23)

wbcre l?l,,, and ~,,, arc lhc complex unknown ampliludm  for each Fourier nmde-

I’his  is the second  equation in the syslctn, rcprcscnting  fields scattered from the

objc~[,

3.3 Coupling  the two rcprtwmtations

‘Ihc.  surface. integral in (S) and the first component of the integral in (3) are

tcrme.d the coupling integrals, since with a convenient choice of the unknown in the

first and of the testing function in the second, they arc made to coup]c  interior and

cxtc.rior  ficlcl representations, I’hc surface S in these surface integrals is chosen to

be that of the surface of revolution. llccause  the surface of revolution is discrctizcd

when using these basis functions, the issue arises of how to rcprese.  nt W on S.

lndvxl, the outer  surface of the interior volume is a union of finilc clctncnt facets.

7’hcsc fwxts  vary, according to the orclcr of finite element rcprcscntation chosen,

from planes to curved surfaces. In general, hmvevcr,  this surface is not identical to

16



the surfmx of revolution. Similarly, the surface of revolution is obtained by

revolving a generating curve around an axis, creating a surface whose cross section

is circular. ]Iowcvcr, for numerical purposes, the generator itself is not necessarily

smoot}~,  but is picccwisc linear, Thus practically, only in the limit of fine meshing

will the two surfaces coincide with c.ach other.

—
‘1’hc finite clcmcnt function W is evaluated approximately on the porlion

of surface of revolution projected from the Iriangalar facet of the tctrabcclron  onto a

strip. ‘l’his is accomplished by an orlbogonal projection of the tetrahedral facet

surface onto the surface of revolution, thus introducing an error which depends on

the size of the tetrahedral facet wi[h respect to the curvature of the surface of

revolution. The coupling term is given by the integral

(24)

where, for each integral equation basis and finite clcmcnt  testing function, the

contributing surface is the union of the projections of a triangular hounc{ary  surface

onto the proper number of surface of revolution strips (up to two in well-posed

cam) . Such surfaces arc curvc(i  triangles, curved {]tl:i(lri l:ilcr2ils, or curved

pentagons. ‘1’hc evaluation of the integrals was done numerically by first inscribing

the above irregular surfaces into curvc(i rectangles ancl then by determining the

points insi(ic  the region of interest from the knowledge of the simplex coordinates of

the original finite clement boundary facet and their properties at points inside the

facet, Tbcsc coupling integrals, as well as the discrcti z.at ion of the sccomi surface

integral in (3), complete the discrcti~,ation  of the problem.
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4. Numerical solution of the linear system

having introducxxi the basis and testing functions for the volume as well as

the sut-face unknowns, substitution into the complete. set of equations yields

q=l,2,3.,. I’

n=l,2,3,.. M

(25)

which can bc expressed in matrix form as

KC o 11 0
c+ o z“ M = o
0 2?,1 ZJ J v,

(26)



where

K =( K,)[W,,]. w,)
c=- qo(q, o w,,)

Z.= @,, ~ [fixq)

~,, =+,,,),[qa)
z, +,,,[q ] . q)

(27)

K,, is tbc volume integral operator in (7); ZMn, anti ZJ,,, arc defined in the. previous

sections. Note that ~ indicates the acljoint of a matrix, wbilc 1’ and M arc the number

of fini(c clement .an(i  intc~tal equation basis functions, rcspcctivcly.

It is notcci that the overall matrix size is clominatcd  by K since the sutfacc

unknowns arc generally a small fraction of tbosc in the volLInlc. Note also that both

K and ~ arc spatsc, ~0 is tri-cliagonal  and ~hl  and ~J arc banded. ‘lThc overall

matrix is very sparse and looks like the scatlcr plot illuslratcci  in l;igure 2 for a sm:ill

ptoblcn) gc.ncratccl for graphical (icl~~{)l~strati[)r~. in particular it is complex, now

sylnmctric,  and nrm-}lcrmitian.

‘1’bc solution to this matrix equation has been clcvcloped  using twu

allcrnat i vc strategies clcpcncli ng upon the application. The two approaches arc

1 ) Solve the entire systcm in onc step using an ilcrativc algorithm for non-

synln~ctric systems. in this work tbc non-symmetric variant of the quasi
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minimal residual algorithm (Ikcund  and Nachtigal, 1991; 1,ucas, 1993) was

app]  i cd.

2) Solve the systcm in two steps by first e.iiminating  }] through tbc

con~pu(ation  of ?,~ = C+ K- ‘C and then by so]ving  the rcduccxi  systcm

–ZKM -i- ZOJ = O

Z#! + Z~J == V, “
(28)

The first step was accomplishcci  by applying a symmetric variant c)f the

quasi-minimal residual iterative algori(hm as WC]] as a clirccl solver based

on an sparse U ‘I>LJ factcrriz,ation. I’he resulting overall matrix (28) was

trcatmi as bcitlg cicnse and the solution of this second systcm was

accomplished via a direct cicnsc I,U (lccolll~>ositi{)rl, since its si7,c is

relatively small.

‘1’hc choice of the so]ution method is dcpcndcnt LIpon a varic[y of f:ictors,

including the number of right-hand siclc excitation vectors and the efficacy of a

prcconditioncr  if iterative algorithms arc used to calculate ~~ in the second

mcttmd.  ‘i’he computational cost of the first method is m:iinly (iuc to solvin~ tile

systctn itcralivc]y for each rigi~t  hand side. The. m;ijor cotlll>Llt:(ti(ltlal cosl in the

sL’,Coll(l l)lC[ho(]  iS calcu]atin~  ~.K ; ~ilis requires the soiution of a systcm of

c.quations,  ]<- 1 ~, wim’e. ~ is a rectangular matrix with a possibly large number of
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columns for electrically large scatterers. When considering R radiation problem

where  there are onc m a few right-hand siclcs, or a scattering problem with one or a

fcw excitations, the first mcthocl may be pre.fcrable.  When mono-static radar cross

scetion calculations are. pcrfornml  and there arc upwards of thousands of right-hand

sides, the second mctbod is more appropriate. ‘1’his  second approach has been

imp]e.lnenlcd  on scalab]c distributed n]cmory compatcm, and is reported in Cwik,

Katz, Zuffada and Jamncjacl (1 995).

‘1’he speed of convergence of iterative methods sach as the quasi-minimal

rcsidaal algorithm depends on the condition number of the matrix. To improve on

the. condition number of the matrix of (26) in a one-step solution, or of matrix K in

a two-step solution. standard ]]recc~l~(liti[)t)i]~g  nmthods  have been examined. It is

noted that, when prcconditioniag  the original matrix, it is ncce.ssary  to preserve its

valuab]c propcr(ies-in the case of the one-s(cp it is sparsity,  whereas for the two-step

ap}mach it is sparsity and symmetry. A matrix M is usecl as a left preconditioncr

in the one-step solution

M. A.x=M. b (29)

where A is the globaI  matrix and b is the right  hand side. ‘1’0 preserve the sparsity

of the matrix, the multiplication on the left-hand sicle of (29) is performed every

time the matrix is used by the quasi-minimal resiclaal  algorithn~, so th:it the

algorithm operates on a sparse matrix. It is sc.e.n that the solution to the modified

problcm  is the same as that to the original problem.



Alternately, ia the two-step method, the matrix oa which the quasi-minimal

residual algorithm is applied is symmetric. ~’het~  the schcmc of (29) is mmlificd into

the symmclric  schcmc

y“_yv(:  ~ [(M’)”’ x] = M’ + 1)
s y m m e t r i c  nmtrix  ~

x’, modiflcd sctlu( ion

(30)

where  the matrix h~’ is a symmetric precm]ditimcr, Ag:iia, to prcscrvc the sparsity

of the matrix, the multiplications by ~fl’ are pcrformccl every time the matrix is

LIscd by the quasi-miaima] residual algorithm, so thtit the algorithm operates oa a

spaIsc system. More dctai]ed iaforination  on the matrix cquatioa solvers caa bc

found ia Cwik, Kat?, Y,uffada and Jamnejad (1 996).

5. ]~l~~t~ic fi~ld  f~r,]]lllati~,]

A dutil formulation for the electric field within the mesh can bc developed

by eithm rcforinulating  the prohlcm  bcgi aai ag with the IIelmholtr,  tqaatioti  for the

electric ficlcl ia Sections 2 through 4, or by applying duality to the final cqtiations  ia

Sectioa 4. As in the magaetic  field formulation, this formulation involves the

expansion of the electric field over the mcsll as

E(r) = ??(,~t?iwi(r)

i

(31)

W} W.IC,  ?)(, is introduced as it was in t}lc cxpansioas  ia Sec t ion  3 tO SC:ilC tbC

equations propcfly. I’hc multaat syslem dual to (26) thca is
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KM C () ]; ()

c+ o -Z. J = o
0 ZJ z,, ill v,

(32)

whctc K’; is the cIuaI of (7)

%-—. .

1[ 1- ]  (V X~)O(VX~*)--k2@@*  dv=>K’;lC  (w,
jrko J!,

‘v

and olbcr notalion remains unchangecl.

‘1’hc electric ficlcl formulation has specific acivantagcs when simulating the

fields scattcrcd m radiated fmm parlicu]ar objects. l;or example when considering

objects with perfectly conducting flat plates or fins, or obje.ets with cle.ctrically thin

strips or patches, it is more expedient to apply the perfectly conducting boundary

condition using the electric field formulation than the magnetic ficlcl formulatim.  In

t})c electric field formulation, element edges that lic on the perfc.ct conduc[or are

removed from the vector IC, and the matrix block K‘{ is similar] y reduced in si z.e.

~’his has the explicit effect of 7croing the coefficients of the electric field lying on

the zero thickness perfect conductors, satisfying the boundary condition thal lhc total

tangential electric field is mm on tbc perfect conductor. I’o accolnplish  this

enforcmcnt of the boundary conditions using the magnetic field fmnulalion,  the

thin con(iuctor  must be nmdc]ed  m a thin vo]umcttic region. I’he ensuing mesh

generation difficulties of creating the small, often distorted elements, makes this

incmvcnicnt  if impractical in practice. An altc.rnativc strategy is to mcsb both faces

of the 7cro thickness conductor with edges that are distinct, though coincidcat,
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therefore moclcling  the tangential magnetic field on the. both faces of the conductor.

‘1’his also leads to meshing difficulties in practice.

6. Namcrical convcrgcace and rcsa]ts

ScmIal  scatterers have been examined in clctail, including diclectt-ic

sphere.s, (coated) metal spheres, fini(e length (coated) metal cylinders, metal

concsphcres, and metal cubes. Results for the spheres and dielectric cylinders will

bc presented here, results for (he other objects can bc founcl in Cwik, Y,uffzida ancl

Jatl~ncjad  (1 995). The features of some of the meshes arc shown in Table 1. A

surrounding shell is used to moclcl a perfectly conducting object coated with a ]aycr

of dielectric material, As a special case, by choosing the dic]cctric  coating to bc air,

the scattering from the perfectly conducting object itself is obtained. Naturally, no

clcmcnts  arc required to model fields inside. perfect conductors. The choice of

metallic objects was based on the existence of results from other codes to bc used

for comparisons.

‘J’able 1. Objccts  and their mcsb dcnsi[ics

Objcct Nodes

1 )iclcct ric sphere 1 865

IIiclcctric sphere 2 2,?73

Metal spbc.re (coated) 516

l)iclcc(ric cylinder 7,076

lilcmcnts

3,963

10,2,40

1,716

34,776

24

5,217

1’2,896

43,791



When Considuing  the dielectric sphere or cylinder, only tbc scatte.rcr itself

was Inodcld  by the mesh since there is no need to e.x(cnd [he mesh outside the

gconlclry of tbc scatterer. in the case of the metal sphere, tbc mesh was a shell

conforming to the object with a thickness chosen to fit one tetrahedral elmcrrt  ,

6.1 Numerical accuracy

‘1’hc accuracy of this mctbmi,  cmnparcd to analy(ic  solutions m alternative

colnputational methods or nlcasurenwnts, was investigated as a function of several

paralnc.tcrs,  Some specific parameters arc:

● mesh clcnsily

. number  of surface of rcvolutirm basis functions alol~g  the generator

. number of surfac.c of revolution a~in~uthal  l;ourier moclcs

. electric pcrmittivity and magnetic permeability of scattcrcr.

I%c first three arc functions of electrical wavelength. It is noted that tbcsc

parameters are not independent, but rather arc closely rclatccl. I’hc canonical object

studied for accuracy was the sphere. IIoth a metal sphere and a dielectric spbcrc

were. considcre.d,  and in the iattc.r case, meshes of two diffcrcmt densities wcm

invest igatcd. l& simplicity the direction of incidcncc. was taken to bc. the positive z

direction with the electric field polarized along x, and tbc I:ouricr mmlcs (-1, O, + 1 )

were considered. Theoretically only the + 1 and -1 modes arc  present in tbc

(Icco]l)l)ositic)r)”  of this incident plane wave, and J)O other mrdc  shoa]d  arise in the

scat(crd  field. ‘1’hc quantity of interest was chosen to be the field  scat(ercd  in tbc }1-
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plane (@ = 0° ). An error measure was constructed by taking the diffcmncc

bctwccn the calculated and cxacl valocs, intcgralml  over the range of angles of

observation 0° < 0 S 180°. This number was clividccl by the integral of the

anal ylic solution over the same rfingc to obtain a measure of quality for (he solution.

Table 2 illustrates tbc range of variation for some of the parameters that

were. mnsidcrccl. I’hc electric pcrmittivity  ~~ was fixed at 9 for the stu(iy  of the

cliclcctric  sphere, whereas the metal sphere was treated with a “coating” of free

space. The table illustrates that the frequency upper limit was chosen to correspond

to the ratio of edges per wavelength close to 10. The choice was made with the

intention to investigate the limitations of mesh applicability and to quantify errors  in

t}~is rather broad range.

As seen in the following results, high accuracy was obtained for a) average

wavelength to edge ratios between 2(I and 40, and b) wavelength to surface of

revolution triangle length ratios bet wccn 10 and 20. 1.owcr accuracy can be found

for lesser numbers of unknowns per wavelength.

Table 2. Summary of edges per wavelength on surface of revolution

I ircqucncy (GI 1?.) 3 5 7 10 15

Metal Sphcret  (16)* 50 31 22 15 10

I)iclcctric Sphere 1 .l~ (16)* 17 10 7 - -

l)iclcctric  Sphere 2~1’ (24)* 25 15 11 - -
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*Nominal rrumbe.r of edges  aloljg generator
1A layer of free space is meshccl
“1”1 c,= 9 used

6.2 Rndar cross scc[ion and mwr-ficlcl  results

A SCI of radar cross section calculations, showing comparisons with either

analytical results or with calculations obtained with the CICIIRO  code, is provided

in l;igs. 3-7. As nlcntioned previously results for other objects can be found in

Cwik, Z,uffada and Jamncjad (1 995). in the Icgcncl our calculation is referred to as

J’IIO1illUS,  the name of the soflware developed from this formulation. ljigurc 3

illustrates the bistatic radar cross section of a metal sphere (radius = ().8 cm) coated

with a layer of Iossy  dielectric (thickness = 0.2 cm). Calculations arc pcrformccl  in

both the }i-plane  and the 11-p]anc and comparisons arc made with available

analytical results. l’hc frequency of excitation is 15 (ill?..

l;igurc  4 illustrate.s the monostatic  radar cross section of a dielectric

cylinder (lcnglh = 10.0 cm, raclius = 1.0 cm) with Cr = 4. The comparison is ma(ic

with the CIC}H<O  code for the $+ plane at 2.5 Cillz, I’hc discrepancy between the

two plots is dLIe  to gconletry  modeling using the picccwisc linear finite element and
,’J

sulfate, of revolution basis functions. This result used, finite clement tctrahcclron

with an average edge length of 0.2 cm. IIy decreasing this edge lcnglh the two

curves can be made al’hitrari]y  close. “1’hc smaller edge length better models the

physical geometry, but is electrically over-sampled (gre.atcr  than the ‘20-30 edges  per

wavelength typically needed). lhis type of modeling discrepancy is common in the

finite clement method when using the linear (non-isoparamctric)  tctrahcclron

functions.
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Jiigum 5 illustrates the near-field results of the clecttic  and magnetic field

on the surface of the dielectric sphere with Er = 9. Shown arc the ; and ~

componc.nts of both 1 i and }1 along a line at () = 45°. The  radius of the sphcm  is 1

cm, and the l’ll OlillLJS rcsu]ts are compared with analytical onc.s at 5 G117,,

7. Ccmclllsicms

‘l’his paper presents a method to compute. the fic]ds of pcnclrab]c thrcc-

di mcnsional  scatterers of general shape by coupling a i7nitc clcmcnt solution to an

intcgtal equation solution on a surface of revolution. ‘1’hc surface of revolution is

chosen to surmuncl  the scatterer, resulting in a minimal amount of vo] ume that needs

to bc discrcti?cd. The LISC of the integral  equation provides an exact cnforcctncnt of

(IIC  Sm~n~c.rfcld  ra(iiation condition. Vector eclgc clcmcnts arc usc.ci to discrcti  T,e the

fic]ds inside the volume, whereas the integral equation is discrctized on a decouple.ci

surface mesh, introducing a small set of additional basis functic)ns  to the systcm,

ScaI[crcd  fields for a variety of objects have been investigated, as well as fields

inside pcnctrablc scallcrcrs.
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1,1ST C)F FIGURKS

];igut’e ]. (icomctry of cmnputationa]  domain showing interior’ and exterior regions.

IJigure  2. Scatter plot figuratively showing structure of systcm of equations.

I )arkencd  spaces indicate non-zero matrix entries.

1+’i.gurc  3. llistatic  radar cross section of coated metal sphere  (radius = 0.8 cm,

coating thickness 0.2 cm) at IS Gllz,.

l;igurc 4, IIistatic raclar cross section of diclcc[ric  cylinder (radius = 1 cm, he,ight =

10 cm) at 2.5 Glw; 4+$ plane.

Iiigure 5. lilectric and magnetic fields on surface of dielectric sphere. (radius= 1 cm)

at 5 Cl] 1?.. Roth t and $ compcmnts  are compared to analytical solutions in a cut

along a generator at 45 degrms,
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- %....
lfigu~e  1. Gcomctv  of scattc,lcr-  st]owing  interior ant] cxtcr-ior  regions.
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